A new piece of an old jigsaw: glucose kinase is activated posttranslationally in a glucose transport-dependent manner in streptomyces coelicolor A3(2).

نویسندگان

  • Gilles P van Wezel
  • Miriam König
  • Kerstin Mahr
  • Harald Nothaft
  • Andreas W Thomae
  • Mervyn Bibb
  • Fritz Titgemeyer
چکیده

Members of the soil-dwelling prokaryotic genus Streptomyces are indispensable for the recycling of complex polysaccharides, and produce a wide range of natural products. Nutrient limitation is likely to be a major signal for the onset of their development, resulting in spore formation by specialized aerial hyphae. Streptomycetes grow on numerous carbon sources, which they utilize in a preferential manner. The main signaling pathway underlying this phenomenon is carbon catabolite repression, which in streptomycetes is totally dependent on the glycolytic enzyme glucose kinase (Glk). How Glk exerts this fascinating dual role (metabolic and regulatory) is still largely a mystery. We show here that while Glk is made constitutively throughout the growth of Streptomyces coelicolor A3(2), its catalytic activity is modulated in a carbon source-dependent manner: while cultures growing exponentially on glucose exhibit high Glk activity, mannitol- grown cultures show negligible activity. Glk activity was directly proportional to the amount of two Glk isoforms observed by Western blot analysis. The activity profile of GlcP, the major glucose permease, correlated very well with that of Glk. Our data are consistent with a direct interaction between Glk and GlcP, suggesting that a Glk-GlcP permease complex is required for efficient glucose transport by metabolic trapping. This is supported by the strongly reduced accumulation of glucose in glucose kinase mutants. A model to explain our data is presented.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Glucose Repression of Carbon Source Uptake and Metabolism in Streptomyces coelicolor A3(2) and its Perturbation in Mutants Resistant to 2-Deox yglucose

A newly devised method to obtain diffuse growth of Streptomyces coelicolor A3(2) in liquid minimal medium was used to study glucose repression. Although diauxic growth was not obtained, glucose repression of uptake of 14C-labelled carbon sources was demonstrated. Active, arabinose-induced, arabinose transport was repressed at the level of transcription by glucose. Of two glycerol-inducible glyc...

متن کامل

Repression in Streptomyces coelicolor

A glucose kinase (glkA) mutant of Streptomyces coelicolor A3(2) M145 was selected by the ability to grow in the presence of the nonmetabolizable glucose analog 2-deoxyglucose. In this glk4 mutant, carbon catabolite repression of glycerol kinase and agarase was relieved on several carbon sources tested, even though most of these carbon sources are not metabolized via glucose kinase. This suggest...

متن کامل

Transcriptional regulation of the four promoters of the agarase gene (dagA) of Streptomyces coelicolor A3(2).

The agarase gene (dagA) of Streptomyces coelicolor A3(2) is transcribed from four promoters that are recognized by at least three, and probably four, different RNA polymerase holoenzymes, each containing a different sigma factor. S1 nuclease protection studies revealed that transcription from all four promoters is induced by the products of agar hydrolysis and strongly repressed by glucose. Mut...

متن کامل

In silico and transcriptional analysis of carbohydrate uptake systems of Streptomyces coelicolor A3(2).

Streptomyces coelicolor is the prototype for the investigation of antibiotic-producing and differentiating actinomycetes. As soil bacteria, streptomycetes can metabolize a wide variety of carbon sources and are hence vested with various specific permeases. Their activity and regulation substantially determine the nutritional state of the cell and, therefore, influence morphogenesis and antibiot...

متن کامل

A glgC gene essential only for the first of two spatially distinct phases of glycogen synthesis in Streptomyces coelicolor A3(2).

By using a PCR approach based on conserved regions of ADP-glucose pyrophosphorylases, a glgC gene was cloned from Streptomyces coelicolor A3(2). The deduced glgC gene product showed end-to-end relatedness to other bacterial ADP-glucose pyrophosphorylases. The glgC gene is about 1,000 kb from the leftmost chromosome end and is not closely linked to either of the two glgB genes of S. coelicolor, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of molecular microbiology and biotechnology

دوره 12 1-2  شماره 

صفحات  -

تاریخ انتشار 2007